

INERIS: NORMES DE QUALITE ENVIRONNEMENTALE

1-CHLORO-2-NITROBENZENE - n° CAS: 88-73-3

Le 1-chloro-2-nitrobenzène est un intermédiaire de synthèse de colorants, de produits pharmaceutiques.

IDENTIFICATION DE LA SUBSTANCE

Substance chimique	1-Chloro-2-nitrobenzène
Synonymes	Ortho-Chloronitrobenzène, 2-Chloro-1-nitrobenzène, 2-CNB, Ortho-Nitrochlorobenzène, 1-Nitro-2-chlorobenzène ONCB
Numéro CAS	88-73-3
Formule moléculaire	C ₆ H ₄ CINO ₂
Code SMILES	c1(c(ccc1)Cl)[N+](=O)[O-]
Structure moléculaire	CI NT O

Validation groupe d'experts : Avril 2012

EVALUATIONS EXISTANTES ET INFORMATIONS REGLEMENTAIRES

Evaluations existantes	OECD (2001). "SIDS Initial Assessment Report for 1-Chloro-2-nitrobenzene (88-73-3).		
Phrases de risque et classification	La substance n'est pas incluse à l'annexe I de la Directive 67/548/CEE (C.E., 1967) ni à l'Annexe VI Règlement (CE) No 1272/2008 (C.E., 2008) car elle n'a pas été évaluée.		
Effets endocriniens	Le 1-chloro-2-nitrobenzène n'est pas cité dans la stratégie communautaire concernant les perturbateurs endocriniens (E.C., 2004) et dans le rapport d'étude de la DG ENV sur la mise à jour de la liste prioritaire des perturbateurs endocriniens à faible tonnage (Petersen <i>et al.</i> , 2007).		
Critères PBT / POP	La substance n'est pas citée dans les listes PBT/vPvB ¹ (C.E., 2006) ou POP ² (PNUE, 2001).		
	Allemagne: critère de qualité pour les organismes d'eau douce = 10 µg/L,		
Norme de qualité existante (cf. ETOX, 2011 ³)	Allemagne : critère de qualité pour les eaux de surface = 1 μg/L,		
2011)	Allemagne: norme de qualité pour les eaux prélevées destinées à la consommation = 10 µg/L,		
	$IKSR/CIPR^4$: objectif de qualité = 1 µg/L.		
Mesures de restriction	-		
	1-Chloro-2-nitrobenzène		
Substance(s) associée(s)	1-Chloro-3-nitrobenzène		
	1-Chloro-4-nitrobenzène		

Validation groupe d'experts : Avril 2012

¹ Les PBT sont des substances persistantes, bioaccumulables et toxiques et les vPvB sont des substances très persistantes et très bioaccumulables. Les critères utilisés pour la classification des PBT sont ceux fixés par l'Annexe XIII du règlement n°1907/2006 (REACH).

² Les Polluants Organiques Persistants (POP) sont des substances persistantes (aux dégradations biotiques et abiotiques), fortement bioaccumulables, et qui peuvent être transportées sur de longues distances et être retrouvée de façon ubiquitaire dans l'environnement. Les critères utilisés pour la classification POP sont ceux fixés par l'Annexe 5 de la Convention de Stockholm placée sous l'égide du PNUE (Programme des Nations Unies pour l'Environnement).

³ Les données issues de cette source (http://webetox.uba.de/webETOX/index.do) ne sont données qu'à titre indicatif; elles n'ont donc pas fait l'objet d'une validation par l'INERIS.

⁴ Commission internationale pour la protection du Rhin.

PROPRIETES PHYSICO-CHIMIQUES

	Valeur	Source
Poids moléculaire [g/mol]	157.56	OECD, 2001
Hydrosolubilité [mg/L]	441 à 20℃ 590 à 20℃	OECD, 2001 BUA, 1985
Pression de vapeur [Pa]	4 à 20℃	OECD, 2001
Constante de Henry [Pa.m³/mol]	1.43 1.54	OECD, 2001 BUA, 1985
Log du coefficient de partage Octanol-eau (log Kow)	2.24 (mesuré)	OECD, 2001
Coefficient de partage carbone organique-eau (Koc) [L/kg]	315.5 (KocWIN v1.66)	OECD, 2001
Constante de dissociation (pKa)	Pas d'information disponible.	

COMPORTEMENT DANS L'ENVIRONNEMENT

PERSISTANCE

		Source
Hydrolyse	Aucune réaction d'hydrolyse n'est attendue en conditions environnementales. La molécule est stable dans l'eau.	OECD, 2001
Photolyse	Pas d'information disponible.	
Biodégradabilité	La substance n'est pas facilement biodégradable (8.2 % après 14 jours, OCDE ligne directrice n°301 C).	OECD, 2001

Validation groupe d'experts : Avril 2012

DISTRIBUTION DANS L'ENVIRONNEMENT

Selon le modèle de fugacité de Mackay (niveau I) (US-EPA et Syracuse Research Corporation, 2001), on retrouve le 1-chloro-2-nitrobenzène préférentiellement dans l'hydrosphère avec 65.4% et dans l'air avec 32.9% (OECD, 2001).

		Source
Adsorption	D'après le Koc (estimé à 315.5 L/kg), la substance est moyennement adsorbable.	OECD, 2001
Volatilisation	D'après sa constante de Henry (1.43-1.54 Pa.m³/mol), le 1-chloro-2-nitrobenzène en solution aqueuse n'a pas tendance à se volatiliser.	OECD, 2001
	BCF compris entre 7 et 22.3 après 56 jours pour <i>Cyprinus carpio</i> (OCDE ligne directrice n°305 C). Le 1-chloro-2-nitrobenzène n'est pas considéré comme bioaccumulable.	
Bioaccumulation/ Biomagnification	Un BCF de 22.3 est utilisé dans la détermination des normes de qualité. Le document guide technique européen pour la dérivation des NQE recommande l'utilisation des valeurs par défaut suivantes pour ce qui est de la prise en compte de la biomagnification : $BMF_1 = BMF_2 = 1$.	OECD, 2001

ECOTOXICITE ET TOXICITE

ORGANISMES AQUATIQUES

Dans les tableaux ci-dessous, ne sont reportés pour chaque taxon uniquement les résultats des tests d'écotoxicité montrant la plus forte sensibilité à la substance. Toutes les données présentées ont été validées.

Ces résultats d'écotoxicité sont principalement exprimés sous forme de NOEC (*No Observed Effect Concentration*), concentration sans effet observé, d' EC_{10} , concentration produisant 10% d'effets et équivalente à la NOEC, ou de EC_{50} , concentration produisant 50% d'effets. Les NOEC sont principalement rattachées à des tests chroniques, qui mesurent l'apparition d'effets sub-létaux à long terme, alors que les EC_{50} sont plutôt utilisées pour caractériser les effets à court terme.

Validation groupe d'experts : Avril 2012

ECOTOXICITE

Les tableaux ci-dessous répertorient les données d'écotoxicité jugées pertinentes pour notre étude. Lorsque ces informations sont disponibles, les concentrations nominales sont reportées suivies de la mention « (n) » et les concentrations mesurées suivies de la mention « (m) ».

ECOTOXICITE AQUATIQUE AIGUË

			Source
Algues & plantes Eau douce		6.9 mg/L Chlorella pyrenoidosa, E _b C ₅₀ (96 h) (biomasse)	Deneer <i>et al.</i> , 1989
aquatiques	Milieu marin	Pas d'information disponible.	
Eau douce		3.2 mg/L Daphnia magna, EC ₅₀ (48 h)	Canton <i>et al.</i> , 1985
Invertébrés		Pas d'information disponible.	
	Milieu marin	Pas d'information disponible.	
	Sédiment	Pas d'information disponible.	
Poissons	Eau douce	25.5 mg/L Cyprinus carpio, LC ₅₀ (96 h)	Zhao <i>et al.</i> , 1997
	Milieu marin	Pas d'information disponible.	

ECOTOXICITE AQUATIQUE CHRONIQUE

			Source
Algues & plantes aquatiques	Eau douce	19 mg/L Scenedesmus subspicatus, E _r C ₁₀ (48 h) (taux de croissance)	Kühn et Pattard, 1990
	Milieu marin	Pas d'information disponible.	
	Eau douce	3 mg/L Daphnia magna, NOEC (21 j) (taux de reproduction; m)	Kehn <i>et al.</i> , 1988
Invertébrés	Milieu marin	Pas d'information disponible.	
	Sédiment	Pas d'information disponible.	
Poissons	Eau douce	0.264 mg/L Pimephales promelas, NOEC (33 j) (effets sur les larves; m)	Call et Geiger, 1992
	Milieu marin	Pas d'information disponible.	

NORMES DE QUALITE POUR LA COLONNE D'EAU

Les normes de qualité pour les organismes de la colonne d'eau sont calculées conformément aux recommandations du guide technique européen pour la détermination des normes de qualité environnementale (E.C., 2011). Elles sont obtenues en divisant la plus faible valeur de NOEC ou d'EC₅₀ valide par un facteur d'extrapolation (AF, Assessment Factor).

Validation groupe d'experts : Avril 2012

1-CHLORO-2-NITROBENZENE - N°CAS: 88-73-3

La valeur de ce facteur d'extrapolation dépend du nombre et du type de tests pour lesquels des résultats valides sont disponibles. Les règles détaillées pour le choix des facteurs sont données dans le guide technique européen (E.C., 2011).

En ce qui concerne les organismes marins, selon le guide technique pour la détermination de normes de qualité environnementale (E.C., 2011), la sensibilité des espèces marines à la toxicité des substances organiques peut être considérée comme équivalente à celle des espèces dulçaquicoles, à moins qu'une différence ne soit montrée.

Néanmoins, les facteurs d'extrapolations appliqués pour déterminer les normes de qualité pour le milieu marin doivent prendre en compte les incertitudes additionnelles telles que la sousreprésentation des taxons clés et une diversité d'espèces plus complexe en milieu marin.

Moyenne annuelle (AA-QS_{water eco} AA-QS_{marine eco}):

Une concentration annuelle moyenne est déterminée pour protéger les organismes de la colonne d'eau d'une possible exposition prolongée.

Pour le 1-chloro-2-nitrobenzène, on dispose de données valides pour 3 niveaux trophiques à la fois en aigu et en chronique. En chronique, la plus basse NOEC a été observée pour Pimephales promelas, (NOEC 33 j à 0.264 mg/L) mais en aigu, ce sont les invertébrés qui apparaissent comme les plus sensibles. Un facteur d'extrapolation de 50 est appliqué conformément au quide technique européen pour la détermination des normes de qualité environnementale (E.C., 2011). L'INERIS propose donc la valeur suivante :

AA-QS_{water_eco} = 0.264 [mg/L] / 50 = 0.00528 mg/L, soit
$$AA-QS_{water_eco} = 5.28 \ \mu g/L$$

En ce qui concerne les organismes marins, aucun essai n'est disponible. Le jeu de données disponible ne permet donc pas de montrer une différence de sensibilité. Conformément au guide technique européen pour la détermination des normes de qualité environnementale (E.C., 2011), la AA-QS_{marine_eco} sera déterminée en appliquant un facteur de sécurité de 500 sur la NOEC 33 j à 0.264 mg/L obtenue pour Pimephales promelas. L'INERIS propose donc la valeur suivante :

AA-QS_{marine_eco} =
$$0.264 / 500 = 0.000528$$
 mg/L, soit AA-QS_{marine_eco} = 0.528 µg/L

Concentration Maximum Acceptable (MAC et MAC_{marine}):

La concentration maximale acceptable est calculée afin de protéger les organismes de la colonne d'eau de possibles effets de pics de concentrations de courtes durées (E.C., 2011).

On dispose de données aiguës pour trois niveaux trophiques (algues, invertébrés, poissons). En aigu, la donnée la plus faible a été obtenue sur Daphnia magna, EC₅₀ (48 h) = 3.2 mg/L. Un facteur d'extrapolation de 100 s'applique pour calculer la MAC :

MAC =
$$3.2 / 100 = 0.032 \text{ mg/L}$$
, soit
MAC = $32 \mu \text{g/L}$

En ce qui concerne les organismes marins, aucun essai n'est disponible. Conformément au guide technique européen pour la détermination des normes de qualité environnementale (E.C., 2011), un

Validation groupe d'experts : Avril 2012

Version 2: 25/06/2012 DRC-11-112070-03874B

facteur d'extrapolation de 1000 s'applique pour déterminer la MAC $_{\text{marine}}$. L'INERIS propose donc la valeur suivante :

$$MAC_{marine} = 3.2 \ /1000 = 0.0032 \ mg/L, \ soit$$

$$MAC_{marine} = 3.2 \ \mu g/L$$

Proposition de norme de qualité pour les organismes de la colonne d'eau (eau douce)				
Moyenne annuelle [AA-QS _{water_eco}]	5	μg/L		
Concentration Maximum Acceptable [MAC] 32 µg/L				
Proposition de norme de qualité pour les organismes de la colonne d'eau (eau marine)				
Moyenne annuelle [AA-QS _{marine_eco}]	0.5	μg/L		
Concentration Maximum Acceptable [MAC _{marine_eco}]	3	μg/L		

VALEUR GUIDE DE QUALITE POUR LE SEDIMENT (QSSED ET QSSED-MARIN)

Un seuil de qualité dans le sédiment est nécessaire (i) pour protéger les espèces benthiques et (ii) protéger les autres organismes d'un risque d'empoisonnement secondaire résultant de la consommation de proies provenant du benthos. Les principaux rôles des normes de qualité pour les sédiments sont de :

- 1. Identifier les sites soumis à un risque de détérioration chimique (la norme sédiment est dépassée)
- 2. Déclencher des études pour l'évaluation qui peuvent conduire à des études plus poussées et potentiellement à des programmes de mesures
- 3. Identifier des tendances à long terme de la qualité environnementale (Art. 4 Directive 2000/60/CE) (C.E., 2000).

Aucune information d'écotoxicité pour les organismes benthiques n'a été trouvée dans la littérature.

A défaut, une valeur guide pour le sédiment peut être calculée à partir du modèle de l'équilibre de partage.

Ce modèle suppose que :

- il existe un équilibre entre la fraction de substances adsorbées sur les particules sédimentaires et la fraction de substances dissoutes dans l'eau interstitielle du sédiment,
- la fraction de substances adsorbées sur les particules sédimentaires n'est pas biodisponible pour les organismes et que seule la fraction de substances dissoutes dans l'eau interstitielle est susceptible d'impacter les organismes,
- la sensibilité intrinsèque des organismes benthiques aux toxiques est équivalente à celle des organismes vivant dans la colonne d'eau. Ainsi, la norme de qualité pour la colonne d'eau peut être utilisée pour définir la concentration à ne pas dépasser dans l'eau interstitielle.

Une valeur guide de qualité pour le sédiment peut être alors calculée selon l'équation suivante (E.C., 2011) :

$$QS_{sed\ wet\ weight}\left[\mu g/kg\right] = \frac{K_{sed\ eau}}{RHO_{sed}} * AA-QS_{water_eco}\left[\mu g/L\right] * 1000$$

Validation groupe d'experts : Avril 2012

Avec:

RHO_{sed}: masse volumique du sédiment en [kg_{sed}/m³_{sed}]. En l'absence d'une valeur exacte, la valeur générique proposée par le document guide technique européen (E.C., 2011) est utilisée : 1300 kg/m³.

K_{sed-eau}: coefficient de partage sédiment/eau en m³/m³. En l'absence d'une valeur exacte, les valeurs génériques proposées par le guide technique européen (E.C., 2011) sont utilisées. Le coefficient est alors calculé selon la formule suivante : 0.8 + 0.025 * Koc soit K_{sed-eau} = 8.7 m³/m³

Pour le 1-chloro-2-nitrobenzène, on obtient :

 $QS_{sed\ wet\ weight} = 33.5\ \mu g/kg_{poids\ humide}$

La concentration correspondante en poids sec peut être estimée en tenant compte du facteur de conversion suivant :

$$RHO_{sed}$$
 1300 ---- = 2.6 Fsolide_{sed} * RHO_{solide} 500

Avec:

Fsolide_{sed}: fraction volumique en solide dans les sédiments en [m³_{solide}/m³_{susp}]. En l'absence d'une valeur exacte, la valeur générique proposée par le document guide technique européen (E.C., 2011) est utilisée : 0.2 m³/m³.

RHO_{solide}: masse volumique de la partie sèche en [kg_{solide}/m³_{solide}]. En l'absence d'une valeur exacte, la valeur générique proposée par le document guide technique européen (E.C., 2011) est utilisée : 2500 kg/m³.

Pour le 1-chloro-2-nitrobenzène, la concentration correspondante en poids sec est :

$$QS_{sed\ drv\ weight} = QS_{sed\ wet\ weight} * 2.6 = 33.5 * 2.6 = 87 \ \mu g/kg_{sed\ poids\ sec}$$

Selon la même approche que pour le sédiment d'eau douce, une valeur guide de qualité pour le sédiment marin peut être calculée selon la formule suivante :

$$QS_{\text{sed-marin wet weight}} \left[\mu g/kg \right] = \frac{K_{\text{sed-eau}}}{RHO_{\text{cod}}} * AA-QS_{\text{marin_eco}} \left[\mu g/L \right] * 1000$$

Pour le 1-chloro-2-nitrobenzène, on obtient :

 $QS_{sed-marin wet weight} = 3.3 \mu g/kg_{poids humide}$

La concentration correspondante en poids sec est alors la suivante:

Validation groupe d'experts : Avril 2012

Version 2 : 25/06/2012 DRC-11-112070-03874B

 $QS_{sed-marin dry weight} = 8.7 \mu g/kg_{sed poids sec}$

Le log Kow de la substance étant inférieur à 5, un facteur additionnel de 10 n'est pas jugé nécessaire.

Il faut rappeler que les incertitudes liées à l'application du modèle de l'équilibre de partage sont importantes. Les sédiments naturels peuvent avoir des propriétés très variables en termes de composition (nature et quantité de matières organiques, composition minéralogique), de granulométrie, de conditions physico-chimiques, de conditions dynamiques (taux de déposition/taux de resuspension). Par ailleurs ces propriétés peuvent évoluer dans le temps en fonction notamment des conditions météorologiques et de la morphologie de la masse d'eau. Si bien que le partage entre la fraction de substance adsorbée et la fraction de substance dissoute peut être extrêmement variable d'un sédiment à un autre et l'hypothèse d'un équilibre entre ces deux fractions ne semble pas très réaliste pour des conditions naturelles.

Par ailleurs, certains organismes benthiques peuvent ingérer les particules sédimentaires, et donc être contaminés par la fraction de substance adsorbée sur ces particules, ce qui n'est pas pris en compte par la méthode.

Proposition de valeur guide de qualité pour les		33	µg/kg _{sed poids humide}
sédiments (eau douce)		87	μg/kg _{sed poids sec}
Proposition de valeur guide de qualité pour les sédiments (eau marine)		3	µg/kg _{sed poids humide}
		8.7	µg/kg _{sed poids sec}
Conditions particulières	Avec un Koc de 315.5 L/kg et un log Kow = 2.24, la mise en œuvre d'un seuil pour le sédiment n'est pas recommandée par le document guide technique européen (E.C., 2011).		

EMPOISONNEMENT SECONDAIRE

Ce chapitre traite de la toxicité chronique induite par la substance sur les prédateurs via la consommation d'organismes aquatiques contaminés (appelés biote, i.e. poissons ou invertébrés vivant dans la colonne d'eau ou dans les sédiments). Il s'agit donc d'évaluer la toxicité chronique de la substance par la voie d'exposition orale uniquement.

Dans les tableaux ci-dessous, ne sont reportés pour chaque type de test que les résultats permettant d'obtenir les NOEC ou la valeur toxicologique de référence (VTR) les plus protectrices. N'ont été recherchés que des tests sur mammifères ou oiseaux exposés par voie orale (exposition par l'alimentation ou par gavage). Toutes les données présentées ont été validées.

Les résultats de toxicité sont principalement donnés sous forme de doses journalières : NOAEL (No Observed Adverse Effect Level), ou LOAEL (Lowest Observed Adverse Effect Level). NOAEL et LOAEL sont exprimées en termes de quantité de substance administrée par unité de masse corporelle de l'animal testé, et par jour.

Pour calculer la norme de qualité liée à l'empoisonnement secondaire des prédateurs, il est nécessaire de connaître la concentration de substance dans le biote n'induisant pas d'effets observés pour les prédateurs (exprimée sous forme de NOEC). Il est possible de déduire une NOEC à partir d'une NOAEL grâce à des facteurs de conversion empiriques variables selon les espèces testées. Les facteurs utilisés ici sont ceux recommandés par le guide technique européen pour la détermination de normes de qualité (E.C., 2011). Les valeurs de ces facteurs de conversion dépendent de la masse corporelle des animaux et de leur consommation journalière de nourriture. Celles-ci peuvent donc

Validation groupe d'experts : Avril 2012

Version 2: 25/06/2012 DRC-11-112070-03874B

maîtriser le risque pour un développement durable

varier d'une façon importante selon le niveau d'activité et le métabolisme de l'animal, la valeur nutritive de sa nourriture, etc. En particulier elles peuvent être très différentes entre un animal élevé en laboratoire et un animal sauvage.

Afin de couvrir ces sources de variabilité, mais aussi pour tenir compte des autres sources de variabilité ou d'incertitude (variabilité inter et intra-espèces, extrapolation du court terme au long terme, etc.) des facteurs d'extrapolation sont nécessaires pour le calcul de la QS_{biota_sec pois}. Les valeurs recommandées pour ces facteurs d'extrapolation sont données dans le guide technique européen (E.C., 2011). Un facteur d'extrapolation supplémentaire (AF_{dose-réponse}) est utilisé dans le cas où la toxicité a été établie à partir d'une LOAEL plutôt que d'une NOAEL.

ECOTOXICITE POUR LES VERTEBRES TERRESTRES

TOXICITE ORALE POUR LES MAMMIFERES

	Type de test	NOAEL ⁽¹⁾ [mg/kg _{corporel} /j]	Source	Facteur de conversion	NOEC [mg/kg _{biota}]
Toxicité sub- chronique et/ou Chronique	Souris Durée: 5 semaines OCDE nº407 Effets: effets sur organes cibles: sang, rate et foie	16	OECD, 2001	Donnée de l'étude	50
Toxicité pour la reproduction	Rat (maternel) Durée: 21 jours Exposition lors gestation: du 6 eme au 15 eme jour. Effets: effets systémiques sur la mère (perte d'appétit, perte de poids, mortalité)	25 ⁽²⁾	OECD, 2001	20	500

⁽¹⁾ NOAEL : No Observed Adverse Effect Level. (2) Aucune NOAEL n'a pu être déterminée sur le développement du fait des effets importants (mortalité) enregistrés sur les mères. Cette étude ne peut donc être retenue.

TOXICITE ORALE POUR LES OISEAUX

	Type de test	NOAEL ⁽¹⁾ [mg/kg _{corporel} /j]	Source	Facteur de conversion	NOEC [mg/kg _{biota}]
Toxicité sub- chronique et/ou Chronique		Pas d'info	rmation disponit	ole.	
Toxicité pour la reproduction		Pas d'info	rmation disponit	ole.	

⁽¹⁾ NOAEL: No Observed Adverse Effect Level

Validation groupe d'experts : Avril 2012

NORME DE QUALITE EMPOISONNEMENT SECONDAIRE (QS_{BIOTA SEC POIS})

La norme de qualité pour l'empoisonnement secondaire (QS_{biota_sec pois}) est calculée conformément aux recommandations du guide technique européen (E.C., 2011). Elle est obtenue en divisant la plus faible valeur de NOEC valide par les facteurs d'extrapolation recommandés (E.C., 2011).

Pour le 1-chloro-2-nitrobenzène, un facteur de 300 est appliqué car la durée du test retenu (NOAEL à 16 mg/kg_{bw}/j sur souris, soit une NOEC de 50 mg/kg_{biota}) est de 5 semaines. Cette durée de test n'est pas assez élevée pour pouvoir appliquer un facteur 90. On obtient donc :

$$QS_{biota\ sec\ pois} = 50\ [mg/kg_{biota}]/300 = 0.167\ mg/kg_{biota} = 167\ \mu g/kg_{biota}$$

Cette valeur de norme de qualité pour l'empoisonnement secondaire peut être ramenée :

• à une concentration dans l'eau douce selon la formule suivante :

$$QS_{biota_sec\ pois}\left[\mu g/kg_{biota}\right]$$

$$QS_{water\ sp}\left[\mu g/L\right] = \frac{}{BCF\left[L/kg_{biota}\right]}*BMF_{1}$$

• à une concentration dans l'eau marine selon la formule suivante :

Avec:

BCF : facteur de bioconcentration, BMF₁ : facteur de biomagnification,

BMF₂: facteur de biomagnification additionnel pour les organismes marins.

Ce calcul tient compte du fait que la substance présente dans l'eau du milieu peut se bioaccumuler dans le biote. Il donne la concentration à ne pas dépasser dans l'eau afin de respecter la valeur de la norme de qualité pour l'empoisonnement secondaire déterminée dans le biote.

La bioaccumulation tient compte à la fois du facteur de bioconcentration (BCF, ratio entre la concentration dans le biote et la concentration dans l'eau) et du facteur de biomagnification (BMF, ratio entre la concentration dans l'organisme du prédateur en bout de chaîne alimentaire, et la concentration dans l'organisme de la proie au début de la chaîne alimentaire). En l'absence de valeurs mesurées pour le BMF_1 et le BMF_2 , celles-ci peuvent être estimées à partir du BCF selon le guide technique européen (E.C., 2011).

Ce calcul n'est donné qu'à titre indicatif. Il fait en effet l'hypothèse qu'un équilibre a été atteint entre l'eau et le biote, ce qui n'est pas véritablement réaliste dans les conditions du milieu naturel. Par ailleurs il repose sur un facteur de bioaccumulation qui peut varier de façon importante entre les espèces considérées.

Pour le 1-chloro-2-nitrobenzène, un BCF de 22.3 et un $BMF_1 = BMF_2$ de 1 (cf. E.C., 2011) ont été retenus. On a donc :

$$QS_{water sp} = 167 [\mu g/kg_{biota}] / (22.3 * 1) = 7.5 \mu g/L$$

$$QS_{marin sp} = 167 [\mu g/kg_{biota}] / (22.3 * 1 * 1) = 7.5 \mu g/L$$

Validation groupe d'experts : Avril 2012

Version 2 : 25/06/2012 DRC-11-112070-03874B

Proposition de norme de qualité pour l'empoisonnement secondaire des prédateurs	167	μg/kg _{biota}
valeur correspondante dans l'eau (douce et marine)	7.5	μg/L

SANTE HUMAINE

Ce chapitre traite de la toxicité chronique induite par la substance sur l'homme soit *via* la consommation d'organismes aquatiques contaminés, soit *via* l'eau de boisson.

Dans les tableaux ci-dessous, ne sont reportés pour chaque type de test que les résultats permettant d'obtenir les NOEC ou la valeur toxicologique de référence (VTR) les plus protectrices. Compte tenu du mode d'exposition envisagée, seuls les tests sur mammifères exposés par voie orale (dans l'alimentation ou par gavage) ont été recherchés.

Toutes les données présentées ont été validées.

Les résultats de toxicité sont principalement donnés sous forme de doses journalières : NOAEL (*No Observed Adverse Effect Level*), ou LOAEL (*Lowest Observed Adverse Effect Level*). NOAEL et LOAEL sont exprimées en termes de quantité de substance administrée par unité de masse corporelle de l'animal testé, et par jour.

TOXICITE

Pour l'évaluation des effets sur la santé humaine, seuls les résultats sur mammifères sont considérés comme pertinents. Contrairement à l'évaluation des effets pour les prédateurs, les effets de type cancérigène ou mutagène sont également pris en compte.

En l'absence de données de toxicité pour le 1-chloro-2-nitrobenzène, il est proposé d'utiliser les résultats obtenus avec le 1-chloro-4-nitrobenzène, dont la structure et les propriétés physicochimiques sont similaires.

	Type de test	NOAEL/LOAEL (1) [mg/kg _{corporel} /j]	Source	Valeur toxicologique de référence (VTR) [µg/kg _{corporel} /j]
Toxicité sub- chronique et/ou chronique	Rat Durée: 140 jours (2 générations) Gavage Effets: Hématotoxicité, altérations histologiques de la rate	LOAEL = 0.1 NOAEL _{corr} ⁽²⁾ = 0.033 (AF dose-réponse = 3)	Monsanto, 1984, cité dans OCDE (SIDS), 2002	0.2 ⁽³⁾ (1-chloro-4- nitrobenzène) Avec : interespèces : 10 intraespèces : 10 durée exposition : 2

⁽¹⁾ NOAEL: No Observed Adverse Effect Level; LOAEL: Lowest Observed Adverse Effect Level. (2) La NOAELcorr correspond à la NOAEL déduite à partir de la LOAEL disponible. (3) Cette VTR a été déterminée par l'INERIS, 2009

Validation groupe d'experts : Avril 2012

	Classement CMR	Source
Cancérogenèse	Les choronitrobenzènes ne peuvent être classés en tant que substances cancérogènes pour l'homme (Groupe 3 selon l'IARC).	HSDB, 2003
	La substance n'est pas inscrite à l'Annexe VI du règlement (CE) No 1272/2008.	C.E., 2008
	Une étude de 18 mois sur rats et souris a été réalisée. Malgré des critères de validité pas satisfaisants (doses testées trop fortes, nombre d'animaux testés trop faible, durée de l'essai trop courte), l'essai montre tout de même que la substance peut être potentiellement cancérogène.	OECD, 2001
Mutagenèse	D'après les tests in vitro, le 1-chloro-2-nitrobenzène n'induit aucun effet mutagène sur les organismes bactériens. Un test in vivo sur cellules de mammifère montre que la substance induit de faibles effets clastogènes. De façon générale, la substance induit de faibles effets clastogènes.	OECD, 2001
	La substance n'est pas inscrite à l'Annexe VI du règlement (CE) No 1272/2008.	C.E., 2008
Reproduction	La substance n'est pas inscrite à l'Annexe VI du règlement (CE) No 1272/2008.	C.E., 2008

NORME DE QUALITE POUR LA SANTE HUMAINE VIA LA CONSOMMATION DES PRODUITS DE LA PECHE (Q S_{BIOTA_HH})

La norme de qualité pour la santé humaine est calculée de la façon suivante (E.C., 2011) :

$$QS_{biota\;hh}\left[\mu g/kg_{biota}\right] = \frac{0.1*VTR\left[\mu g/kg_{corporel}/j\right]*poids\;corporel\left[kg_{corporel}\right]}{Cons.\;Journ.\;Moy.\;\left[kg_{biota}/j\right]} = \frac{1}{F_{securit\acute{e}}}$$

Ce calcul tient compte de :

- un facteur correctif de 10% (soit 0.1): la VTR donnée ne tient compte en effet que d'une exposition par voie orale, et pour la consommation de produits de la pêche uniquement. Mais la contamination peut aussi se faire par la consommation d'autres sources de nourriture, par la consommation d'eau, et d'autres voies d'exposition sont possibles (inhalation ou contact cutané). Le facteur correctif de 10% (soit 0.1) permet de rendre l'objectif de qualité plus sévère d'un facteur 10 afin de tenir compte de ces autres sources de contamination possibles.
- la valeur toxicologique de référence (VTR), correspondant à une dose totale admissible par jour ; pour cette substance elle sera considérée égale à 0.2 μg/kg_{corporel}/j (cf. tableau ci-dessus),
- un poids corporel moyen de 70 kg,
- F_{sécurité}: facteur de sécurité supplémentaire pour tenir compte des potentiels effets CMR ou de perturbation endocrine de la substance. Le 1-chloro-2-nitrobenzene ne présentant aucune de ces propriétés, le facteur de sécurité est fixé à 1.
- Cons. Journ. Moy : une consommation journalière moyenne de produits de la pêche (poissons, mollusques, crustacés) égale à 115 g par jour.

Ce calcul n'est donné qu'à titre indicatif. Il peut être inadapté pour couvrir les risques pour les individus plus sensibles ou plus vulnérables (masse corporelle plus faible, forte consommation de produits de la pêche, voies d'exposition individuelles particulières). Le facteur correctif de 10% n'est donné que par défaut, car la contribution des différentes voies d'exposition varie selon les propriétés de la substance (et en particulier sa distribution entre les différents compartiments de l'environnement), ainsi que selon

Validation groupe d'experts : Avril 2012

Version 2: 25/06/2012

les populations considérées (travailleurs exposés, exposition pour les consommateurs/utilisateurs, exposition via l'environnement uniquement). L'hypothèse cependant que la consommation des produits de la pêche ne représente pas plus de 10% des apports journalier contribuant à la dose journalière tolérable apporte une certaine marge de sécurité (E.C., 2011).

Pour le 1-chloro-2-nitrobenzène, le calcul aboutit à :

$$0.1 * 0.2 \ [\mu g/kg_{corporel}/j] * 70 \ [kg_{corporel}]$$

$$QS_{biota\ hh} \ [\mu g/kg_{biota}] = ----- = 12.17 \ \mu g/kg_{biota}$$

$$0.115 \ [kg_{biota}/j]$$

Comme pour l'empoisonnement secondaire, la concentration correspondante dans l'eau du milieu peut être estimée en tenant compte de la bioaccumulation de la substance :

à une concentration dans l'eau douce selon la formule suivante :

• à une concentration dans l'eau marine selon la formule suivante :

Pour le 1-chloro-2-nitrobenzène, on obtient donc :

$$QS_{water\ hh\ food} = 12.17\ /\ (22.3\ ^*\ 1) = 0.54\ \mu g/L$$

$$QS_{marine\ hh\ food} = 12.17\ /\ (22.3\ ^*\ 1\ ^*\ 1) = 0.54\ \mu g/L$$

Proposition de norme de qualité pour la santé humaine via la consommation de produits de la pêche	12	μg/kg _{biota}
valeur correspondante dans l'eau (douce et marine)	0.5	μg/L

NORME DE QUALITE POUR LA SANTE HUMAINE VIA L'EAU DE BOISSON (QS_{DW_HH})

En principe, lorsque des normes de qualité dans l'eau de boisson existent, soit dans la Directive 98/83/CE (C.E., 1998), soit déterminées par l'OMS, elles peuvent être adoptées. Les valeurs réglementaires de la Directive 98/83/CE doivent être privilégiées par rapport aux valeurs de l'OMS qui ne sont que de simples recommandations.

Il faut signaler que ces normes réglementaires ne sont pas nécessairement établies sur la base de critères (éco)toxicologiques (par exemple les normes pour les pesticides avaient été établies par rapport à la limite de quantification analytique de l'époque pour ce type de substance, soit $0.1 \ \mu g/L$).

Pour le 1-chloro-2-nitrobenzène, la Directive 98/83/CE ainsi que l'OMS ne fixent aucune valeur.

La valeur seuil provisoire pour l'eau de boisson est donc calculée de la façon suivante (E.C., 2011):

Validation groupe d'experts : Avril 2012

Version 2 : 25/06/2012 DRC-11-112070-03874B

$$0.1*VTR \left[\mu g/kg_{corporel}/j\right]* poids corporel \left[kg_{corporel}\right] \qquad 1 \\ MPC_{dw, \ hh} \left[\mu g/L\right] = ------* \\ Cons.moy.eau \left[L/j\right] \qquad \qquad F_{s\'ecurit\'e}$$

Ce calcul tient compte de :

- la valeur toxicologique de référence (VTR), correspondant à une dose totale admissible par jour ; pour cette substance elle sera considérée égale à 0.2 μg/kg_{corporel}/j (cf. tableau ci-dessus),
- Cons.moy.eau [L/j]: une consommation d'eau moyenne de 2 L par jour,
- un poids corporel moyen de 70 kg,
- un facteur correctif de 10% (soit 0.1) afin de tenir compte de ces autres sources de contamination possibles.
- F_{sécurité}: facteur de sécurité supplémentaire pour tenir compte des potentiels effets CMR ou de perturbation endocrine de la substance. Le 1-chloro-2-nitrobenzène ne présentant aucune de ces propriétés, le facteur de sécurité est fixé à 1.

L'eau de boisson est obtenue à partir de l'eau brute du milieu après traitement pour la rendre potable. La fraction éliminée lors du traitement dépend de la technologie utilisée ainsi que des propriétés de la substance.

Ainsi, la norme de qualité correspondante dans l'eau brute se calcule de la manière suivante :

En l'absence d'information, on considèrera que la fraction éliminée est nulle et le critère pour l'eau de boisson s'appliquera alors à l'eau brute du milieu. Par ailleurs, on rappellera que ce calcul n'est donné qu'à titre indicatif et peut s'avérer inadéquat pour certaines substances et certaines populations.

Pour le 1-chloro-2-nitrobenzène, on obtient :

QS_{dw_hh} =
$$\frac{0.1*\ 0.2*\ 70}{2*\ (1-0)}$$
 = 0.7 µg/L

En l'absence de valeur fixée par la directive 98/83/CE, la valeur seuil provisoire pour l'eau de boisson calculée ci-dessus est proposée comme norme de qualité pour l'eau destinée à la production d'eau potable.

Proposition de norme de qualité pour l'eau destinée à l'eau potable	0.7 μg/L	
---	----------	--

Validation groupe d'experts : Avril 2012

PROPOSITION DE NORME DE QUALITE ENVIRONNEMENTALE (NQE)

La NQE est définie à partir de la valeur de la norme de qualité la plus protectrice parmi tous les compartiments étudiés.

		Valeur	Unité		
PROPOSITION DE NORMES DE QUALITE					
Organismes aquatiques (eau douce) moyenne annuelle	AA-QS _{water_eco}	5	μg/L		
Organismes aquatiques (eau douce) Concentration Maximum Acceptable	MAC	32	μg/L		
Organismes aquatiques (eau marine) moyenne annuelle	AA-QS _{marine_eco}	0.5	μg/L		
Organismes aquatiques (eau marine) Concentration Maximum Acceptable	MAC _{marine}	3	μg/L		
Empoisonnement secondaire des prédateurs	QS _{biota sec pois}	167	μg/kg _{biota}		
valeur correspondante dans l'eau (douce et marine)	QS _{water_sp} QS _{marine_sp}	7.5	μg/L		
Santé humaine via la consommation de produits de la pêche	QS _{biota hh}	12	µg/kg _{biota}		
valeur correspondante dans l'eau (douce et marine)	QS _{water hh food} QS _{marine hh food}	0.5	μg/L		
Santé humaine via l'eau destinée à l'eau potable	QS _{dw_hh}	0.7	μg/L		

Pour le 1-chloro-2-nitrobenzène, on dispose de données valides uniquement pour le compartiment aquatique. Pour la protection de la santé humaine, les données obtenues avec le 1-chloro-4-nitrobenzène ont été utilisées. Pour le 1-chloro-2-nitrobenzène, la norme de qualité pour la protection de la santé humaine vis-à-vis de la consommation de produits de la pêche est la valeur la plus faible pour l'ensemble des approches considérées.

Validation groupe d'experts : Avril 2012

La proposition de NQE pour le 1-chloro-2-nitrobenzène est donc la suivante :

PROPOSITION DE NORME DE QUALITE ENVIRONNEMENTALE

EAU DOUCE

Moyenne Annuelle dans l'eau : $NQE_{EAU-DOUCE} = 0.5 \mu g/L$

fondée sur la proposition norme de qualité pour la NQE $_{\text{BIOTE}}$ = 12 $\mu g/kg_{\text{biota}}$ protection de la santé humaine via la

consommation de produits de la pêche :

Concentration Maximale Acceptable dans l'eau: MAC_{EAU-DOUCE} = 32 μg/L

EAU MARINE

Moyenne Annuelle dans l'eau : $NQE_{EAU-MARINE} = 0.5 \mu g/L$

fondée sur la proposition norme de qualité pour la NQE_{BIOTE} = 12 μg/kg_{biota}

protection de la santé humaine v consommation de produits de la pêche :

Concentration Maximale Acceptable dans l'eau: $MAC_{EAU-MARINE} = 3 \mu g/L$

VALEURS GUIDES POUR LE SEDIMENT

Avec un Koc de 315.5 L/kg et un log Kow = 2.24, la mise en œuvre d'un seuil pour le sédiment n'est pas recommandée selon le projet de guide européen (E.C., 2011).

Validation groupe d'experts : Avril 2012

BIBLIOGRAPHIE

- BUA (1985). o-Chloronitrobenzene. BUA Report 2. GDCh-Advisory Committee on Existing Chemicals of Environmental Relevance. October 1985.
- C.E. (1967). Directive 67/548/CEE du Conseil, du 27 juin 1967, concernant le rapprochement des dispositions législatives, réglementaires et administratives relatives à la classification, l'emballage et l'étiquetage des substances dangereuses. Journal officiel n°196 du 16/08/1967 p. 0001 0098.
- C.E. (1998). Directive 98/83/CE du conseil du 3 novembre 1998 relative à la qualité des eaux destinées à la consommation humaine, Journal Officiel L 330/32 du 5.12.1998: 32-54.
- C.E. (2000). Directive 2000/60/CE du Parlement Européen et du Conseil du 23 octobre 2000 établissant un cadre pour une politique communautaire dans le domaine de l'eau, JO L 327 du 22.12.2000: 1-86.
- C.E. (2006). Règlement (CE) N° 1907/2006 du Parlement européen et du Conseil du 18 décembre 2006 concernant l'enregistrement, l'évaluation et l'autorisation des substances chimiques, ainsi que les restrictions applicables à ces substances (REACH), instituant une agence européenne des produits chimiques, modifiant la directive 1999/45/CE et abrogeant le règlement (CEE) N° 793/93 du Conseil et le règlement (CE) N° 1488/94 de la Commission ainsi que la directive 76/769/CEE du Conseil et les directives 91/155/CEE, 93/67/CEE, 93/105/CE et 2000/21/CE de la Commission, JO L 396 du 30.12.2006: p. 1–849.
- C.E. (2008). Règlement (CE) no 1272/2008 du Parlement européen et du Conseil du 16 décembre 2008 relatif à la classification, à l'étiquetage et à l'emballage des substances et des mélanges, modifiant et abrogeant les directives 67/548/CEE et 1999/45/CE et modifiant le règlement (CE) no 1907/2006.
- Call D.J. et Geiger D.L. (1992). <u>Subchronic Toxicities of Industrial and Agricultural Chemicals to Fathead Minnows (Pimephales promelas)</u>. WI, University of Wisconsin-Superior.
- Canton J.H., Sloof W., Kool H.J., Struijs J., Pouw T.J.M., Wegman R.C.C. et Piet G.J. (1985). "Toxicity, biodegradability and accumulation of a number of Cl/N-containing compounds for classification and establishing water quality criteria." Regulatory Toxicology and Pharmacology **5**: 123-131.
- Deneer J.W., Van Leeuwen C.J., Seinen W., Maas-Diepeveen J.L. et Hermens J.L.M. (1989). "QSAR study of the toxicity of nitrobenzene derivatives towards Daphnia magna, Chlorella pyrenoidosa and Photobacterium phosphoreum." Aquatic Toxicology **15**(1): pp. 83-98.
- E.C. (2004). Commission staff working document on implementation of the Community Strategy for Endocrine Disrupters a range of substances suspected of interfering with the hormone systems of humans and wildlife (COM(1999) 706)). SEC(2004) 1372. European Commission, Brussels
- E.C. (2011). Technical Guidance For Deriving Environmental Quality Standards. Guidance Document No. 27 for the Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Technical Report 2011 055. http://circa.europa.eu/Public/irc/env/wfd/library?l=/framework directive/guidance documents/tgd-eqs_cis-wfd/_EN_1.0_&a=d.
- ETOX. (2011). "Datenbank für ökotoxikologische Wirkungsdaten und Qualitätsziele." from http://webetox.uba.de/webETOX/index.do.
- HSDB. (2003). "(Hazardous Substances Data Bank)." from http://toxnet.nlm.nih.gov/cgibin/sis/htmlgen?HSDB.

Validation groupe d'experts : Avril 2012

Version 2 : 25/06/2012 DRC-11-112070-03874B

1-CHLORO-2-NITROBENZENE - N°CAS: 88-73-3

Kehn R., Pattard M., Pernak K.D. et Winter A. (1988). Schadstoffwirkungen von Umweltchemikalien im Daphnien-Reproduktions-Test als Grundlage für die Bewertung der Umwelt-gefaehrlichkeit in aquatischen Systemen. Institut für Wasser-, Boden- und Lufthygiene des Bundesgesundheitsamtes, Im Auftrag des Umweltbundesamtes

Kühn R. et Pattard M. (1990). "Results of the harmful effects of water pollutants to green algae (*Scenedesmus subspicatus*) in the cell multiplication inhibition test." Wat. Res. **24**(1): 31-38.

OECD (2001). "SIDS Initial Assessment Report for 1-Chloro-2-nitrobenzene (88-73-3)."

Petersen G., Rasmussen D. et Gustavson K. (2007). Study on enhancing the Endocrine Disrupter priority list with a focus on low production volume chemicals. DHI, 53559

PNUE (2001). Convention de Stockholm sur les Polluants Organiques Persistants: pp 47.

US-EPA et Syracuse Research Corporation (2001). EPI Suite, US EPA.

Zhao Y.H., Xing Y., Ji G.D., Sheng L.X. et Wang L.S. (1997). "Quantitative structure-activity relationships of nitroaromatic compounds to four aquatic organisms." Chemosphere **34**(8): 1837-1844.

Validation groupe d'experts : Avril 2012

