րարակարակարություն արակակակարարարակակակարակարակարակակարակակա

INERIS: NORMES DE QUALITE ENVIRONNEMENTALE

METHAMIDOPHOS - N° CAS: 10265-92-6

Le méthamidophos est un insecticide de la famille des organophosphorés. Il agit sur les synapses cholinergiques par inhibition de l'AChesterase.

Il n'y a pas de produits phytopharmaceutiques contenant du métamidophos autorisé en France (http://e-phy.agriculture.gouv.fr/, mai 2010).

L'inscription de la substance à l'Annexe I de la Directive 91/414/CE (C.E., 1991) a expiré le 30 juin 2008.

IDENTIFICATION DE LA SUBSTANCE

Substance chimique	Méthamidophos		
Synonymes	-		
Numéro CAS	10265-92-6		
Formule moléculaire	C ₂ H ₈ NO ₂ PS		
Code SMILES	COP(N)(=O)SC		
Structure moléculaire	H ₂ N CH ₃		

Validation groupe d'experts : Avril 2012

EVALUATIONS EXISTANTES ET INFORMATIONS REGLEMENTAIRES

Evaluations existantes	DG SANCO, 2000 US-EPA, 2002		
Annexe I Directive 67/548/CEE (C.E., 1967) T+; R26/28 T; R24 N; R50 Annexe VI Règlement (CE) No 1272/2008 (C.E., 2008) Acute Tox. 2 H330 Acute Tox. 2 H300 Acute Tox. 3 H311 Aquatic Acute 1 H400			
Effets endocriniens	Le méthamidophos n'est pas cité dans la stratégie communautaire concernant les perturbateurs endocriniens (E.C., 2004) et dans le rapport d'étude de la DG ENV sur la mise à jour de la liste prioritaire des perturbateurs endocriniens à faible tonnage (Petersen <i>et al.</i> , 2007).		
Critères PBT / POP	La substance n'est pas citée dans les listes PBT/vPvB ¹ (C.E., 2006) et POP ² (PNUE, 2001).		
Normes de qualité existantes (ETOX, 2011 ³)	Allemagne: Norme de qualité pour les eaux prélevées destinées à la consommation = 0.1 µg/L <u>Union Européenne:</u> Limite pour l'eau potable fixée par la directive 98/83/CE pour les pesticides: 0.1 µg/L.		
Mesure de restriction	-		
Substance(s) associée(s)	Acephate: Le méthamidophos est un métabolite du sol de l'acéphate 'substance interdite en Europe pour son usage pesticide)		

La monographie pour le méthamidophos (qui fait partie de la liste pour l'évaluation dans le cadre de la 91/414/CE (C.E., 1991)) n'est pas encore publiée sur le site de la Direction Générale de la Santé et de la Protection des Consommateurs de la Commission Européenne (DG SANCO). Une version intermédiaire du rapport d'évaluation (Septembre 2000), transmise par la Direction Générale de l'Alimentation du Ministère de l'Agriculture⁴, a été utilisée (EC, 2000). Les données d'écotoxicité présentées, ont été étudiées et discutées par les experts des différents Etats membres, et n'ont pas fait l'objet de commentaires depuis la version de septembre 2000. Ces données seront donc considérées comme valides.

Validation groupe d'experts : Avril 2012

¹ Les PBT sont des substances persistantes, bioaccumulables et toxiques et les vPvB sont des substances très persistantes et très bioaccumulables. Les critères utilisés pour la classification des PBT sont ceux fixés par l'Annexe XIII du règlement n°1907/2006 (REACH).

² Les Polluants Organiques Persistants (POP) sont des substances persistantes (aux dégradations biotiques et abiotiques), fortement bioaccumulables, et qui peuvent être transportées sur de longues distances et être retrouvée de façon ubiquitaire dans l'environnement. Les critères utilisés pour la classification POP sont ceux fixés par l'Annexe 5 de la Convention de Stockholm placée sous l'égide du PNUE (Programme des Nations Unies pour l'Environnement).

³ Les données issues de cette source (http://webetox.uba.de/webETOX/index.do) ne sont données qu'à titre indicatif; elles n'ont donc pas fait l'objet d'une validation par l'INERIS.

⁴ Autorité compétente en France pour l'application de la directive 91/414/CEE

Il existe également un rapport de l'US-EPA réalisé dans le cadre de la "Reregistration Eligibility Decision" pour le méthamidophos (US-EPA, 2002).

PROPRIETES PHYSICO-CHIMIQUES

	Valeurs	Source
Poids moléculaire [g/mol]	141.13	
Hydrosolubilité [mg/L]	>200000 à 20℃	
Pression de vapeur [Pa]	2.3.10 ⁻³ à 20℃ 4.7.10 ⁻³ à 25℃	
Constante de Henry [Pa.m3/mol]	<1.6.10 ⁻⁶ à 25 ℃	EC, 2000
Log du coefficient de partage Octanol-eau (log Kow)	-0.80 à 20℃	
Coefficient de partage carbone organique-eau (Koc) [L/kg]	0.88-5.69	
Constante de dissociation (pKa)	Pas d'information disponible.	

COMPORTEMENT DANS L'ENVIRONNEMENT

PERSISTANCE

		Source
Hydrolyse	Le temps de demi-vie d'hydrolyse du méthamidophos dépend du pH. A pH 5, moins de 10% de cette substance est dégradé après 30 jours. Par ailleurs, le temps de demi-vie d'hydrolyse a été déterminé à 27 et 3.2 jours pour des pH de 7 et 9 respectivement. La dégradation n'est que partielle et génère plusieurs métabolites.	EC, 2000 ; US-EPA, 2002
Photolyse	Le temps de demi-vie de photolyse dans l'eau à pH 5 a été déterminé à 90 jours. La dégradation n'est que partielle et génère plusieurs métabolites.	EC, 2000 ; US-EPA, 2002
Biodégradabilité	La biodégradation aérobie du méthamidophos a été étudiée dans deux systèmes eau-sédiment. Les temps de demi-vies déterminés sont compris entre 4.1 - 5.8 jours pour le système global (eau-sédiment) et de 4.0 à 7.8 jours pour la phase aqueuse seulement. Après 60 jours, 66% du méthamidophos est minéralisé sous forme de CO ₂ .	EC, 2000

Validation groupe d'experts : Avril 2012

DISTRIBUTION DANS L'ENVIRONNEMENT

		Source
Adsorption	La faible valeur de Koc (0.88-5.69 L/kg) du méthamidophos indique que cette substance n'a pas tendance à s'adsorber sur les sédiments ou les particules en suspension dans l'eau.	-
Volatilisation	Le méthamidophos n'est pas volatil.	-
Bioaccumulation/ Biomagnification	Le méthamidophos possède un log Kow très faible et une solubilité dans l'eau importante. Ainsi, ces données laissent penser que le méthamidophos ne s'accumule pas dans les organismes aquatiques. Des facteurs de bioconcentration inférieurs à 2 ont été déterminés pour <i>Micropterus salmoides</i> , <i>Daphnia magna</i> , ou pour des diatomées marines. Un BCF de 2 est utilisé dans la détermination des normes de qualité. Le document guide technique européen pour la dérivation des NQE recommande l'utilisation des valeurs par défaut suivantes pour ce qui est de la prise en compte de la biomagnification : BMF ₁ = BMF ₂ = 1.	US-EPA, 2002

ECOTOXICITE ET TOXICITE

ORGANISMES AQUATIQUES

Dans les tableaux ci-dessous, sont reportés pour chaque taxon uniquement les résultats des tests d'écotoxicité montrant la plus forte sensibilité à la substance. Toutes les données présentées ont été validées ou sont issues du rapport d'évaluation de l'US-EPA (2002).

Ces résultats d'écotoxicité sont principalement exprimés sous forme de NOEC (*No Observed Effect Concentration*), concentration sans effet observé, d' EC_{10} , concentration produisant 10% d'effets et équivalente à la NOEC, ou de EC_{50} , concentration produisant 50% d'effets. Les NOEC sont principalement rattachées à des tests chroniques, qui mesurent l'apparition d'effets sub-létaux à long terme, alors que les EC_{50} sont plutôt utilisées pour caractériser les effets à court terme.

Validation groupe d'experts : Avril 2012

ECOTOXICITE

Les tableaux ci-dessous répertorient les données d'écotoxicité jugées pertinentes pour notre étude. Lorsque ces informations sont disponibles, les concentrations nominales sont reportées suivies de la mention « (n) » et les concentrations mesurées suivies de la mention « (m) »

ECOTOXICITE AQUATIQUE AIGUË

Organi	isme	Espèce Critère d'effet V		Valeur [mg/L]	Source		
Algues & plantes	Eau douce	Scenedesmus subspicatus	EC ₅₀ (96h)	> 178	E.C., 2000		
aquatiques	Milieu marin		Pas d'information disponible.				
	Eau douce	Daphnia magna EC ₅₀ (48h) 0.27 E.C., 2000					
Invertébrés	Milieu marin	Americamysis bahia	EC ₅₀ (48h)	1.05	US-EPA, 2002		
	Sédiment	Pas d'information disponible.					
	Eau douce	Oncorhynchus mykiss	LC ₅₀ (96h)	25	US-EPA, 2002		
Poissons	Milieu marin	Cyprinodon variegatus	LC ₅₀ (96h)	5.6	US-EPA, 2002		

ECOTOXICITE AQUATIQUE CHRONIQUE

Organ	isme	Espèce Critère d'effet Valeur [mg/L] Source				
Algues & plantes	Eau douce	Pas d'information disponible.				
aquatiques	Milieu marin	Pas d'information disponible.				
	Eau douce	Daphnia magna NOEC (21j) 0.026 E.C., 2000				
Invertébrés	Milieu marin	Pas d'information disponible.				
	Sédiment	Pas d'information disponible.				
Poissons	Eau douce	Oncorhynchus mykiss NOEC (97j) 2.15 E.C., 2000				
FUISSUIIS	Milieu marin	Pas d'information disponible.				

NORMES DE QUALITE POUR LA COLONNE D'EAU

Les normes de qualité pour les organismes de la colonne d'eau sont calculées conformément aux recommandations du guide technique européen pour la détermination des normes de qualité environnementale (E.C., 2011). Elles sont obtenues en divisant la plus faible valeur de NOEC ou d'EC₅₀ valide par un facteur d'extrapolation (AF, Assessment Factor).

La valeur de ce facteur d'extrapolation dépend du nombre et du type de tests pour lesquels des résultats valides sont disponibles. Les règles détaillées pour le choix des facteurs sont données dans le guide technique européen (E.C., 2011).

En ce qui concerne les organismes marins, selon le projet guide technique pour la détermination de normes de qualité environnementale (E.C., 2011), la sensibilité des espèces marines à la toxicité des

Validation groupe d'experts : Avril 2012

substances organiques peut être considérée comme équivalente à celle des espèces dulçaquicoles, à moins qu'une différence ne soit montrée.

Néanmoins, le facteur d'extrapolation appliqué pour déterminer les normes de qualité pour le milieu marin doit prendre en compte les incertitudes additionnelles telles que la sous-représentation des taxons clés et une diversité d'espèces plus complexe en milieu marin.

Moyenne annuelle (AA-QS_{water_eco} et AA-QS_{marine_eco})

Une concentration annuelle moyenne est déterminée pour protéger les organismes de la colonne d'eau d'une possible exposition prolongée.

Pour le méthamidophos, on dispose de données valides pour 3 niveaux trophiques en aigu. On dispose de données chroniques pour les invertébrés et les poissons. Les invertébrés semblent être le niveau trophique le plus sensible tant en aigu qu'en chronique. Conformément au guide technique européen pour la détermination des normes de qualité environnementale (E.C., 2011), l'application d'un facteur de sécurité de 10 sur la NOEC (21 j) à 0.026 mg/L déterminée pour la daphnie apparaît suffisante pour dériver la AA-QS_{water eco}:

AA-QS
$$_{water_eco}$$
 = 0.026 / 10 = 0.0026 mg/L soit AA-QS $_{water_eco}$ = 2.6 μ g/L

En ce qui concerne les organismes marins, on dispose de données valides pour deux niveaux trophiques en aigu (invertébrés et poissons). Aucune donnée n'est disponible en chronique. Pour les mêmes raisons que celles évoquées pour le compartiment eau douce et conformément au guide technique européen pour la détermination des normes de qualité environnementale (E.C., 2011), la AA-QS_{marine_eco} sera déterminée en appliquant un facteur de sécurité de 100 sur la plus faible NOEC disponible (NOEC (21 j) à 0.026 mg/L déterminée pour la daphnie) :

AA-QS_{marine_eco} =
$$0.026$$
 / 100 = 0.00026 mg/L soit AA-QS_{marine_eco} = 0.26 μ g/L

Concentration Maximum Acceptable (MAC et MAC_{marine})

La concentration maximale acceptable est calculée afin de protéger les organismes de la colonne d'eau de possibles effets de pics de concentrations de courtes durées (E.C., 2011).

On dispose de données aiguës pour 3 niveaux trophiques (algues, invertébrés et poissons), la plus faible étant celle sur *Daphnia magna*, EC_{50} 48 h = 0.27 mg/L. Conformément au guide technique européen pour la détermination des normes de qualité environnementale (E.C., 2011), un facteur d'extrapolation de 100 est appliqué pour calculer la MAC (E.C., 2011).

MAC =
$$0.27 / 100 = 0.0027$$
 mg/L, soit MAC = $2.7 \mu g/L$

Pour le milieu marin, des données aigues sont disponibles pour deux niveaux trophiques, un facteur d'extrapolation de 100 est appliqué pour calculer la MAC conformément au guide technique européen pour la détermination des normes de qualité environnementale (E.C., 2011) :

$$MAC_{marine} = 0.27 \ / \ 100 = 0.0027 \ mg/L, \ soit$$

$$MAC_{marine} = 2.7 \ \mu g/L$$

Validation groupe d'experts : Avril 2012

Proposition de norme de qualité pour les organismes de la colonne d'eau (eau douce)				
Moyenne annuelle [AA-QS _{water_eco}]	2.6	μg/L		
Concentration Maximum Acceptable [MAC] 2.7 μg/L				
Proposition de norme de qualité pour les organismes de la colonne d'eau (eau marine)				
Moyenne annuelle [AA-QS _{marine_eco}]	0.26	μg/L		
Concentration Maximum Acceptable [MAC _{marine}]	2.7	μg/L		

VALEUR GUIDE DE QUALITE POUR LE SEDIMENT (QS_{SED} ET QS_{SED-MARIN})

Un seuil de qualité dans le sédiment est nécessaire (i) pour protéger les espèces benthiques et (ii) protéger les autres organismes d'un risque d'empoisonnement secondaire résultant de la consommation de proies provenant du benthos. Les principaux rôles des normes de qualité pour les sédiments sont de :

- 1. Identifier les sites soumis à un risque de détérioration chimique (la norme sédiment est dépassée)
- 2. Déclencher des études pour l'évaluation qui peuvent conduire à des études plus poussées et potentiellement à des programmes de mesures
- 3. Identifier des tendances à long terme de la qualité environnementale (Art. 4 Directive 2000/60/CE) (C.E., 2000).

Aucune information d'écotoxicité pour les organismes benthiques n'a été trouvée dans la littérature.

A défaut, une valeur guide pour le sédiment peut être calculée à partir du modèle de l'équilibre de partage.

Ce modèle suppose que :

- il existe un équilibre entre la fraction de substances adsorbées sur les particules sédimentaires et la fraction de substances dissoutes dans l'eau interstitielle du sédiment.
- la fraction de substances adsorbées sur les particules sédimentaires n'est pas biodisponible pour les organismes et que seule la fraction de substances dissoutes dans l'eau interstitielle est susceptible d'impacter les organismes,
- la sensibilité intrinsèque des organismes benthiques aux toxiques est équivalente à celle des organismes vivant dans la colonne d'eau. Ainsi, la norme de qualité pour la colonne d'eau peut être utilisée pour définir la concentration à ne pas dépasser dans l'eau interstitielle.

Une valeur guide de qualité pour le sédiment peut être alors calculée selon l'équation suivante (E.C., 2011) :

$$QS_{sed\ wet\ weight}\left[\mu g/kg\right] = \frac{K_{sed\ eau}}{RHO_{sed}} * AA-QS_{water_eco}\left[\mu g/L\right] * 1000$$

Avec:

RHO_{sed}: masse volumique du sédiment en [kg_{sed}/m³_{sed}]. En l'absence d'une valeur exacte, la valeur générique proposée par le document guide technique européen (E.C., 2011) est utilisée : 1300 kg/m³.

K_{sed-eau}: coefficient de partage sédiment/eau en m³/m³. En l'absence d'une valeur exacte, les valeurs génériques proposées par le guide technique européen (E.C., 2011) sont utilisées. Le

Validation groupe d'experts : Avril 2012

coefficient est alors calculé selon la formule suivante : 0.8 + 0.025 * Koc soit $K_{\text{sed-eau}} = 0.8 - 0.9 \text{ m}^3/\text{m}^3$

Pour le méthamidophos, on obtient :

$$QS_{sed wet weight} = 1.6 - 1.8 \mu g/kg_{poids humide}$$

La concentration correspondante en poids sec peut être estimée en tenant compte du facteur de conversion suivant :

$$\begin{array}{ccc} RHO_{sed} & 1300 \\ \hline ----- = 2.6 \\ Fsolide_{sed} * RHO_{solide} & 500 \\ \end{array}$$

Avec:

Fsolide_{sed}: fraction volumique en solide dans les sédiments en [m³_{solide}/m³_{susp}]. En l'absence d'une valeur exacte, la valeur générique proposée par le document guide technique européen (E.C., 2011) est utilisée : 0.2 m³/m³.

RHO_{solide}: masse volumique de la partie sèche en [kg_{solide}/m³_{solide}]. En l'absence d'une valeur exacte, la valeur générique proposée par le document guide technique européen (E.C., 2011) est utilisée : 2500 kg/m³.

Pour le méthamidophos, la concentration correspondante en poids sec est :

$$QS_{sed\ dry\ weight} = 4.2-4.7\ \mu g/kg_{sed\ poids\ sec}$$

Selon la même approche que pour le sédiment d'eau douce, une valeur guide de qualité pour le sédiment marin peut être calculée selon la formule suivante :

$$QS_{\text{sed-marin wet weight}} \left[\mu g/kg \right] = \frac{K_{\text{sed-eau}}}{\text{RHO}_{\text{sed}}} * AA-QS_{\text{marin_eco}} \left[\mu g/L \right] * 1000$$

Pour le méthamidophos, on obtient :

$$QS_{sed-marin wet weight} = 0.16 - 0.18 \mu g/kg_{poids humide}$$

La concentration correspondante en poids sec est alors la suivante:

$$QS_{sed-marin dry weight} = 0.42 - 0.47 \mu g/kg_{sed poids sec}$$

Le log Kow de la substance étant inférieur à 5, un facteur additionnel de 10 n'est pas jugé nécessaire.

Il faut rappeler que les incertitudes liées à l'application du modèle de l'équilibre de partage sont importantes. Les sédiments naturels peuvent avoir des propriétés très variables en termes de composition (nature et quantité de matières organiques, composition minéralogique), de granulométrie, de conditions physico-chimiques, de conditions dynamiques (taux de déposition/taux de resuspension). Par ailleurs ces propriétés peuvent évoluer dans le temps en fonction notamment des conditions météorologiques et de la morphologie de la masse d'eau. Si bien que le partage entre la fraction de substance adsorbée et la fraction de substance dissoute peut être extrêmement variable d'un sédiment à un autre et l'hypothèse d'un équilibre entre ces deux fractions ne semble pas très réaliste pour des conditions naturelles.

Validation groupe d'experts : Avril 2012

Par ailleurs, certains organismes benthiques peuvent ingérer les particules sédimentaires, et donc être contaminés par la fraction de substance adsorbée sur ces particules, ce qui n'est pas pris en compte par la méthode.

Proposition de valeur guide de qualité pour les sédiments (eau douce)		1.6	µg/kg _{sed poids humide}	
		4	µg/kg _{sed poids sec}	
Proposition de valeur guide de qualité pour les sédiments (eau marine)		0.16	µg/kg _{sed poids humide}	
		0.4	µg/kg _{sed poids sec}	
Conditions particulières	Avec un Koc estimé de 0.88 à 5.69 L/kg et un log Kow de -0.80, la mise en œuvre d'un seuil pour le sédiment n'est pas recommandée selon le projet de guide européen (E.C., 2011).			

EMPOISONNEMENT SECONDAIRE

Ce chapitre traite de la toxicité chronique induite par la substance sur les prédateurs *via* la consommation d'organismes aquatiques contaminés (appelés biote, i.e. poissons ou invertébrés vivant dans la colonne d'eau ou dans les sédiments). Il s'agit donc d'évaluer la toxicité chronique de la substance par la voie d'exposition orale uniquement.

Dans les tableaux ci-dessous, ne sont reportés pour chaque type de test que les résultats permettant d'obtenir les NOEC ou la valeur toxicologique de référence (VTR) les plus protectrices. N'ont été recherchés que des tests sur mammifères ou oiseaux exposés par voie orale (exposition par l'alimentation ou par gavage). Toutes les données présentées ont été validées.

Les résultats de toxicité sont principalement donnés sous forme de doses journalières : NOAEL (*No Observed Adverse Effect Level*), ou LOAEL (*Lowest Observed Adverse Effect Level*). NOAEL et LOAEL sont exprimées en termes de quantité de substance administrée par unité de masse corporelle de l'animal testé, et par jour.

Pour calculer la norme de qualité liée à l'empoisonnement secondaire des prédateurs, il est nécessaire de connaître la concentration de substance dans le biote n'induisant pas d'effets observés pour les prédateurs (exprimée sous forme de NOEC). Il est possible de déduire une NOEC à partir d'une NOAEL grâce à des facteurs de conversion empiriques variables selon les espèces testées. Les facteurs utilisés ici sont ceux recommandés par le guide technique européen pour la détermination de normes de qualité (E.C., 2011). Les valeurs de ces facteurs de conversion dépendent de la masse corporelle des animaux et de leur consommation journalière de nourriture. Celles-ci peuvent donc varier d'une façon importante selon le niveau d'activité et le métabolisme de l'animal, la valeur nutritive de sa nourriture, etc. En particulier elles peuvent être très différentes entre un animal élevé en laboratoire et un animal sauvage.

Afin de couvrir ces sources de variabilité, mais aussi pour tenir compte des autres sources de variabilité ou d'incertitude (variabilité inter et intra-espèces, extrapolation du court terme au long terme, etc.) des facteurs d'extrapolation sont nécessaires pour le calcul de la QS_{biota_sec_pois}. Les valeurs recommandées pour ces facteurs d'extrapolation sont données dans le guide technique européen (E.C., 2011). Un facteur d'extrapolation supplémentaire (AF_{dose-réponse}) est utilisé dans le cas où la toxicité a été établie à partir d'une LOAEL plutôt que d'une NOAEL.

Validation groupe d'experts : Avril 2012

ECOTOXICITE POUR LES VERTEBRES TERRESTRES

TOXICITE ORALE POUR LES MAMMIFERES

	Type de test	NOAEL/LOAEL ⁽¹⁾ [mg/kg _{corporel} /j]	Source	Facteur de conversion	NOEC [mg/kg _{biota}]
Toxicité sub- chronique et/ou chronique	Chien beagle Durée de l'étude : 1 an. Administration orale via l'alimentation. Effet : inhibition de la cholinestérase	LEL ⁽²⁾ = 0.05 NOAEL _{corr} ⁽³⁾ = 0.005 Facteur d'extrapolation LOAEL -> NOAEL = 10 (4)	Mobay Chemical Corporation, 1984	40	0.2
Toxicité sur la reproduction	Pas d'information disponible.				

⁽¹⁾ NOAEL: No Observed Adverse Effect Level; LOAEL: Lowest Observed Adverse Effect Level. (2) Low Effect Level; (3) La NOAELcorr correspond à la NOAEL déduite à partir de la LOAEL disponible. (4) Le facteur de 10 utilisé pour extrapoler de la LO(A)EL à la NOAEL a été fixé par l'US-EPA.

TOXICITE ORALE POUR LES OISEAUX

	Type de test	NOAEL/LOAEL ⁽¹⁾ [mg/kg _{corporel} /j]	Source	Facteur de conversion	NOEC [mg/kg _{biota}]
Toxicité sub- chronique et/ou chronique		Pas d'information	on disponible		

⁽¹⁾ NOAEL: No Observed Adverse Effect Level; LOAEL: Lowest Observed Adverse Effect Level

NORME DE QUALITE EMPOISONNEMENT SECONDAIRE (QS_{BIOTA_SEC POIS})

La norme de qualité pour l'empoisonnement secondaire (QS_{biota_sec pois}) est calculée conformément aux recommandations du guide technique européen (E.C., 2011). Elle est obtenue en divisant la plus faible valeur de NOEC valide par les facteurs d'extrapolation recommandés (E.C., 2011).

Pour le méthamidophos, un facteur de 90 est appliqué car la durée du test retenu (NOAEL à $0.005~\text{mg/kg}_{\text{corporel}}/\text{j}$ sur le chien, soit une NOEC de $0.2~\text{mg/kg}_{\text{biota}}$) est de 1 an. On obtient donc :

$$QS_{biota\ sec\ pois} = 0.2\ [mg/kg_{biota}]/90 = 0.0022\ mg/kg_{biota} = 2.22\ \mu g/kg_{biota}$$

Cette valeur de norme de qualité pour l'empoisonnement secondaire peut être ramenée :

• à une concentration dans l'eau douce selon la formule suivante :

$$QS_{biota_sec\ pois}\left[\mu g/kg_{biota}\right] = \frac{QS_{biota_sec\ pois}\left[\mu g/kg_{biota}\right]}{BCF\left[L/kg_{biota}\right]*BMF_{1}}$$

Validation groupe d'experts : Avril 2012

• à une concentration dans l'eau marine selon la formule suivante :

Avec:

BCF: facteur de bioconcentration, BMF₁: facteur de biomagnification,

BMF₂: facteur de biomagnification additionnel pour les organismes marins.

Ce calcul tient compte du fait que la substance présente dans l'eau du milieu peut se bioaccumuler dans le biote. Il donne la concentration à ne pas dépasser dans l'eau afin de respecter la valeur de la norme de qualité pour l'empoisonnement secondaire déterminée dans le biote.

La bioaccumulation tient compte à la fois du facteur de bioconcentration (BCF, ratio entre la concentration dans le biote et la concentration dans l'eau) et du facteur de biomagnification (BMF, ratio entre la concentration dans l'organisme du prédateur en bout de chaîne alimentaire, et la concentration dans l'organisme de la proie au début de la chaîne alimentaire). En l'absence de valeurs mesurées pour le BMF₁ et le BMF₂, celles-ci peuvent être estimées à partir du BCF selon le guide technique européen (E.C., 2011).

Ce calcul n'est donné qu'à titre indicatif. Il fait en effet l'hypothèse qu'un équilibre a été atteint entre l'eau et le biote, ce qui n'est pas véritablement réaliste dans les conditions du milieu naturel. Par ailleurs il repose sur un facteur de bioaccumulation qui peut varier de façon importante entre les espèces considérées.

Pour le méthamidophos un BCF de 2 et un $BMF_1 = BMF_2$ de 1 (cf. E.C., 2011) ont été retenus. On a donc :

$$QS_{water sp} = 2.22 [\mu g/kg_{biota}] / (2 * 1) = 1.1 \mu g/L$$

$$QS_{marin sp} = 2.22 [\mu g/kg_{biota}] / (2 * 1 * 1) = 1.1 \mu g/L$$

Proposition de norme de qualité pour l'empoisonnement secondaire des prédateurs	2 .2	μg/kg _{biota}
valeur correspondante dans l'eau (douce et marine)	1.1	μg/L

SANTE HUMAINE

Ce chapitre traite de la toxicité chronique induite par la substance pour l'homme soit *via* la consommation d'organismes aquatiques contaminés, soit *via* l'eau de boisson.

Dans les tableaux ci-dessous, ne sont reportés pour chaque type de test que les résultats permettant d'obtenir les NOEC ou la valeur toxicologique de référence (VTR) les plus protectrices. Compte tenu du mode d'exposition envisagée, seuls les tests sur mammifères exposés par voie orale (dans l'alimentation ou par gavage) ont été recherchés.

Toutes les données présentées ont été validées.

Les résultats de toxicité sont principalement donnés sous forme de doses journalières : NOAEL (*No Observed Adverse Effect Level*), ou LOAEL (*Lowest Observed Adverse Effect Level*). NOAEL et LOAEL sont exprimées en termes de quantité de substance administrée par unité de masse corporelle de l'animal testé, et par jour.

Validation groupe d'experts : Avril 2012

TOXICITE

Pour l'évaluation des effets sur la santé humaine, seuls les résultats sur mammifères sont considérés comme pertinents. Contrairement à l'évaluation des effets pour les prédateurs, les effets de type cancérigène ou mutagène sont également pris en compte.

	Type de test	NOAEL [mg/kg _{corporel} /j]	Source	Valeur toxicologique de référence (VTR) [µg/kg _{corporei} /j]
Toxicité sub- chronique et/ou chronique	Chien Durée de l'étude : 1 an. Administration orale via l'alimentation. Effet : inhibition de la cholinestérase.	LEL ⁽¹⁾ = 0.05 Facteur d'extrapolation ⁽⁴⁾ LOEL -> NOAEL = 10 ⁽²⁾	Mobay Chemical Corporation, 1984	0.05 ⁽³⁾ Facteur d'extrapolation : 100 (variations inter et intra espèce)
Toxicité sur la reproduction	Pas d'information disponible.			
Cancérogénèse	Pas d'information disponible.			

⁽¹⁾ Low Effect Level ; (2) La NOAEL_{corr} correspond à la NOAEL déduite à partir de la LOAEL disponible. (3) Cette VTR définie par l'US-EPA a été identifiée comme pertinente pour ces travaux par l'INERIS (2009). (4) Le facteur de 10 utilisé pour extrapoler de la LO(A)EL à la NOAEL a été fixé par l'US-EPA

	Classement CMR	Source
Cancérogenèse	La substance est inscrite à l'Annexe VI du règlement (CE) No 1272/2008 et ne fait pas l'objet d'un classement pour la cancérogenèse.	C.E., 2008
Mutagenèse	Les différents tests de génotoxicité réalisés n'ont révélé aucun effet génotoxique du méthamidophos. La substance est inscrite à l'Annexe VI du règlement (CE) No 1272/2008 mais ne fait pas l'objet d'un classement pour la mutagenèse.	HSDB, 2003 C.E., 2008
Toxicité pour la reproduction	La substance est inscrite à l'Annexe VI du règlement (CE) No 1272/2008 mais ne fait pas l'objet d'un classement pour la reproduction.	C.E., 2008

NORME DE QUALITE POUR LA SANTE HUMAINE VIA LA CONSOMMATION DES PRODUITS DE LA PECHE (QS_{BIOTA_HH})

La norme de qualité pour la santé humaine est calculée de la façon suivante (E.C., 2011) :

$$QS_{biota\;hh}\left[\mu g/kg_{biota}\right] = \frac{0.1*VTR\left[\mu g/kg_{corporel}/j\right]*poids\;corporel\left[kg_{corporel}\right]}{Cons.\;Journ.\;Moy.\;\left[kg_{biota}/j\right]} \frac{1}{F_{securit\acute{e}}}$$

Ce calcul tient compte de :

- un facteur correctif de 10% (soit 0.1) : la VTR donnée ne tient compte en effet que d'une exposition par voie orale, et pour la consommation de produits de la pêche uniquement. Mais la contamination peut aussi se faire par la consommation d'autres sources de nourriture, par la

Validation groupe d'experts : Avril 2012

consommation d'eau, et d'autres voies d'exposition sont possibles (inhalation ou contact cutané). Le facteur correctif de 10% (soit 0.1) permet de rendre l'objectif de qualité plus sévère d'un facteur 10 afin de tenir compte de ces autres sources de contamination possibles.

- la valeur toxicologique de référence (VTR), correspondant à une dose totale admissible par jour ; pour cette substance elle sera considérée égale à 0.05 μg/kg_{corporel}/j (cf. tableau ci-dessus),
- un poids corporel moyen de 70 kg,
- F_{sécurité}: facteur de sécurité supplémentaire pour tenir compte des potentiels effets CMR ou de perturbation endocrinienne de la substance. Le méthamidophos ne présentant aucune de ces propriétés, le facteur de sécurité est fixé à 1,
- Cons. Journ. Moy: une consommation journalière moyenne de produits de la pêche (poissons, mollusques, crustacés) égale à 115 g par jour.

Ce calcul n'est donné qu'à titre indicatif. Il peut être inadapté pour couvrir les risques pour les individus plus sensibles ou plus vulnérables (masse corporelle plus faible, forte consommation de produits de la pêche, voies d'exposition individuelles particulières). Le facteur correctif de 10% n'est donné que par défaut, car la contribution des différentes voies d'exposition varie selon les propriétés de la substance (et en particulier sa distribution entre les différents compartiments de l'environnement), ainsi que selon les populations considérées (travailleurs exposés, exposition pour les consommateurs/utilisateurs, exposition via l'environnement uniquement). L'hypothèse cependant que la consommation des produits de la pêche ne représente pas plus de 10% des apports journaliers contribuant à la dose journalière tolérable apporte une certaine marge de sécurité (E.C., 2011).

Pour le méthamidophos, le calcul aboutit à :

$$0.1 * 0.05 \ [\mu g/k g_{corporel}/j] * 70 \ [k g_{corporel}]$$

$$QS_{biota\ hh} \ [\mu g/k g_{biota}] = ----- = 3 \ \mu g/k g_{biota}$$

$$0.115 \ [k g_{biota}/j]$$

Comme pour l'empoisonnement secondaire, la concentration correspondante dans l'eau du milieu peut être estimée en tenant compte de la bioaccumulation de la substance :

• à une concentration dans l'eau douce selon la formule suivante :

• à une concentration dans l'eau marine selon la formule suivante :

Pour le méthamidophos, on obtient donc :

$$QS_{water\ hh\ food} = 3/(2^*\ 1) = 1.5\ \mu g/L$$

$$QS_{marine_hh\ food} = 3 / (2 * 1 * 1) = 1.5 \ \mu g/L$$

Proposition de norme de qualité pour la santé humaine via la consommation de produits de la pêche	-2	μg/kg _{biota}
valeur correspondante dans l'eau (douce et marine)	1.5	μg/L

Validation groupe d'experts : Avril 2012

NORME DE QUALITE POUR LA SANTE HUMAINE VIA L'EAU DE BOISSON (QSDW HH)

En principe, lorsque des normes de qualité dans l'eau de boisson existent, soit dans la Directive 98/83/CE (C.E., 1998), soit déterminées par l'OMS, elles peuvent être adoptées. Les valeurs réglementaires de la Directive 98/83/CE doivent être privilégiées par rapport aux valeurs de l'OMS qui ne sont que de simples recommandations.

Il faut signaler que ces normes réglementaires ne sont pas nécessairement établies sur la base de critères (éco)toxicologiques (par exemple les normes pour les pesticides avaient été établies par rapport à la limite de quantification analytique de l'époque pour ce type de substance, soit $0.1 \mu g/L$).

Pour le méthamidophos. la Directive 98/83/CE fixe une valeur de 0.1 µg/L.

A titre de comparaison, la valeur seuil provisoire pour l'eau de boisson est calculée de la façon suivante (E.C., 2011):

$$0.1*VTR \left[\mu g/k g_{corporel}/j\right]* poids corporel \left[k g_{corporel}\right] \qquad 1 \\ MPC_{dw, \ hh} \left[\mu g/L\right] = -----* \\ Cons.moy.eau \left[L/j\right] \qquad F_{s\acute{e}curit\acute{e}}$$

Ce calcul tient compte de :

- la valeur toxicologique de référence (VTR), correspondant à une dose totale admissible par jour ; pour cette substance elle sera considérée égale à 0.05 μg/kg_{corporel}/j (cf. tableau ci-dessus),
- Cons.moy.eau [L/j]: une consommation d'eau moyenne de 2 L par jour,
- un poids corporel moyen de 70 kg,
- un facteur correctif de 10% (soit 0.1) afin de tenir compte de ces autres sources de contamination possibles,
- F_{sécurité}: facteur de sécurité supplémentaire pour tenir compte des potentiels effets CMR ou de perturbation endocrinienne de la substance. Le méthamidophos ne présentant aucune de ces propriétés, le facteur de sécurité est fixé à 1.

L'eau de boisson est obtenue à partir de l'eau brute du milieu après traitement pour la rendre potable. La fraction éliminée lors du traitement dépend de la technologie utilisée ainsi que des propriétés de la substance.

Ainsi, la norme de qualité correspondante dans l'eau brute se calcule de la manière suivante :

En l'absence d'information, on considèrera que la fraction éliminée est nulle et le critère pour l'eau de boisson s'appliquera alors à l'eau brute du milieu. Par ailleurs, on rappellera que ce calcul n'est donné qu'à titre indicatif et peut s'avérer inadéquat pour certaines substances et certaines populations.

Pour le méthamidophos, on obtient :

Validation groupe d'experts : Avril 2012

QS_{dw_hh} =
$$0.1* 0.05 * 70$$

2 * (1 - 0)

La valeur la plus protectrice, fixée par la directive 98/83/CE est proposée comme norme de qualité pour l'eau destinée à la production d'eau potable.

Proposition de norme de qualité pour l'eau destinée à l'eau potable	0.1	μg/L
---	-----	------

Validation groupe d'experts : Avril 2012

Version 2 : 02/07/2012 DRC-11-112070-04485B

Page 15

PROPOSITION DE NORME DE QUALITE ENVIRONNEMENTALE (NQE)

La NQE est définie à partir de la valeur de la norme de qualité la plus protectrice parmi tous les compartiments étudiés.

		Valeur	Unité			
PROPOSITION DE NORMES DE QUALITE						
Organismes aquatiques (eau douce) moyenne annuelle	AA-QS _{water_eco}	2.6	μg/L			
Organismes aquatiques (eau douce) Concentration Maximum Acceptable	MAC	2.7	μg/L			
Organismes aquatiques (eau marine) moyenne annuelle	AA-QS _{marine_eco}	0.26	μg/L			
Organismes aquatiques (eau marine) Concentration Maximum Acceptable	MAC _{marine}	2.7	μg/L			
Empoisonnement secondaire des prédateurs	QS _{biota} sec pois	2.2	μg/kg _{biota}			
valeur correspondante dans l'eau (douce et marine)	QS _{water_sp} QS _{marine_sp}	1.1	μg/L			
Santé humaine via la consommation de produits de la pêche	QS _{biota hh}	3	μg/kg _{biota}			
valeur correspondante dans l'eau (douce et marine)	QS _{water hh food} QS _{marine hh food}	1.5	μg/L			
Santé humaine via l'eau destinée à l'eau potable	QS _{dw_hh}	0.1	μg/L			

Pour le méthamidophos, la norme de qualité Santé humaine via l'eau destinée à l'eau potable est la valeur la plus faible pour l'ensemble des approches considérées. La proposition de NQE pour le méthamidophos est donc la suivante :

Validation groupe d'experts : Avril 2012

PROPOSITION DE NORME DE QUALITE ENVIRONNEMENTALE

EAU DOUCE

Moyenne Annuelle dans l'eau (eau destinée à l'eau $NQE_{EAU-DOUCE} = 0.1 \mu g/L$ potable) :

Moyenne Annuelle dans l'eau (eau <u>non</u> destinée à $NQE_{EAU-DOUCE} = 1.1 \mu g/L$ l'eau potable) :

fondée sur la proposition de norme de qualité $NQE_{BIOTE} = 2.2 \, \mu g/kg_{biota}$ pour la protection des prédateurs via la consommation d'organismes aquatiques

contaminés

Concentration Maximale Acceptable dans l'eau: $MAC_{EAU-DOUCE} = 2.7 \mu g/L$

EAU MARINE

Moyenne Annuelle dans l'eau : $NQE_{EAU-MARINE} = 0.26 \mu g/L$

Concentration Maximale Acceptable dans l'eau: MAC_{EAU-MARINE} = 2.7 µg/L

VALEURS GUIDES POUR LE SEDIMENT

Avec un Koc estimé de 0.88 à 5.69 L/kg et un log Kow de -0.80, la mise en œuvre d'un seuil pour le sédiment n'est pas recommandée selon le projet de guide européen (E.C., 2011).

Validation groupe d'experts : Avril 2012

BIBLIOGRAPHIE

- C.E. (1967). Directive 67/548/CEE du Conseil, du 27 juin 1967, concernant le rapprochement des dispositions législatives, réglementaires et administratives relatives à la classification, l'emballage et l'étiquetage des substances dangereuses. Journal officiel n°196 du 16/08/1967 p. 0001 0098.
- C.E. (1991). Directive du conseil du 15 juillet 1991 concernant la mise sur le marché des produits phytopharmaceutiques (91/414/CEE), Journal officiel n°L 230 du 19/08/1991 : p. 0001 0032.
- C.E. (1998). Directive 98/83/CE du conseil du 3 novembre 1998 relative à la qualité des eaux destinées à la consommation humaine, Journal Officiel L 330/32 du 5.12.1998: 32-54.
- C.E. (2000). Directive 2000/60/CE du Parlement Européen et du Conseil du 23 octobre 2000 établissant un cadre pour une politique communautaire dans le domaine de l'eau, JO L 327 du 22.12.2000: 1-86.
- C.E. (2006). Règlement (CE) N° 1907/2006 du Parlement européen et du Conseil du 18 décembre 2006 concernant l'enregistrement, l'évaluation et l'autorisation des substances chimiques, ainsi que les restrictions applicables à ces substances (REACH), instituant une agence européenne des produits chimiques, modifiant la directive 1999/45/CE et abrogeant le règlement (CEE) N° 793/93 du Conseil et le règlement (CE) N° 1488/94 de la Commission ainsi que la directive 76/769/CEE du Conseil et les directives 91/155/CEE, 93/67/CEE, 93/105/CE et 2000/21/CE de la Commission, JO L 396 du 30.12.2006: p. 1–849.
- C.E. (2008). Règlement (CE) no 1272/2008 du Parlement européen et du Conseil du 16 décembre 2008 relatif à la classification, à l'étiquetage et à l'emballage des substances et des mélanges, modifiant et abrogeant les directives 67/548/CEE et 1999/45/CE et modifiant le règlement (CE) no 1907/2006.
- E.C. (2004). Commission staff working document on implementation of the Community Strategy for Endocrine Disrupters a range of substances suspected of interfering with the hormone systems of humans and wildlife (COM(1999) 706)). SEC(2004) 1372. European Commission, Brussels
- E.C. (2011). Technical Guidance For Deriving Environmental Quality Standards. Guidance Document No. 27 for the Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Technical Report 2011 055. http://circa.europa.eu/Public/irc/env/wfd/library?l=/framework_directive/guidance_documents/tgd-eqs_cis-wfd/_EN_1.0_&a=d.
- EC (2000). Draft assessment report prepared in the context of the possible inclusion of the following active substance in Annex I of Council Directive 91/414/EEC: Methamidophos. Rapporteur Member State: Italy (September 2000). European Commission (EC).
- ETOX. (2011). "Datenbank für ökotoxikologische Wirkungsdaten und Qualitätsziele." from http://webetox.uba.de/webETOX/index.do.
- HSDB (2003). "Metamidophos. Hasardous Substances Data Bank, National Library of Medecine."
- Mobay Chemical Corporation (1984). " Mobay Chemical Corporation.MRID No. 00147938, 41234304. Available from EPA. Write to FOI, EPA, Washington, DC 20460."
- Petersen G., Rasmussen D. et Gustavson K. (2007). Study on enhancing the Endocrine Disrupter priority list with a focus on low production volume chemicals. DHI, 53559
- PNUE (2001). Convention de Stockholm sur les Polluants Organiques Persistants: pp 47.
- US-EPA (2002). Interim Reregistration Eligibility Decision for Methamidophos Revised Environmental Fate and Effects Assessment., United States Environmental Protection Agency (EPA) Office of prevention, Pesticides and Toxic Substances.(April 2002).

Validation groupe d'experts : Avril 2012

