INERIS – Émissions accidentelles de substances chimiques dangereuses dans l'atmosphère SEUILS DE TOXICITÉ AIGUË

Bioxyde de chlore

■ Identification

Formule Chimique	N°CAS	N°Index	N°EINECS	Dénominations (Designation)	Etat physique _(*)	
CIO ₂	10049-04-4	017-026-00-3	233-162-8	Chlorine dioxide	Gaz	

(*) à T et P ambiante (20°C / 1 atm)

■ Principales utilisations

Le bioxyde de chlore est utilisé pour le blanchiment de la pâte à papier, de la farine et des textiles. Il s'agit également d'un agent bactéricide et antiseptique. Il est également utilisé comme désodorisant et comme virucide pour la désinfection de l'eau potable, des eaux usées et des piscines. Il est utilisé dans les tours de refroidissement et dans l'industrie agroalimentaire, ainsi que pour le nettoyage et le détannage des cuirs.

■ Étiquetage

O, T+, C, N

R6, R8, R26, R34, R50

S1/2, S23, S26, S28, S36/37/39, S38, S45, S61

■ Paramètres physico-chimiques

• Masse molaire (g/mol)67,5 • Pression de vapeur (Pa)
à 20 °C101.10³
· Concentration de vapeur saturante à 20°C
en g/m³ 2 800
en ppm 1 008 000
· Densité de la phase vapeur
(par rapport à l'air)2,3
• Seuil de perception (SP) 0,276 mg,

· Solubilité dans l'eau à 20°C (g/L) · Température de fusion (°C)	
· Température d'ébullition (°C)	
· Température d'auto-inflammation (°C)	
· Point éclair (°C)	*
· Limites d'explosivité (% dans l'air)	
Inférieure (LIE)	10%
Supérieure (LSE)	
·Facteur de conversion (à 25°C / 1 atm)	
1 ppm = 2,	76 mg/m ³
$1 \text{ mg/m}^3 -$	0.36 nnm

(*) Non concerné

INERIS – Émissions accidentelles de substances chimiques dangereuses dans l'atmosphère Seuls de toxicité aiguë

Bioxyde de chlore

■ Seuils des effets toxiques (juillet 2010)

Concentration	Temps (min.)							
	1	10	20	30	60	120	240	480
Seuil des effets létaux significatifs - SELS								
· mg/m³	297	138	109	96	76	60	48	24
• ppm	108	50	40	35	27	22	17	9
Seuil des premiers effets létaux - SPEL								
· mg/m³	230	107	85	74	59	47	37	19
• ppm	83	39	31	27	21	17	13	7
Seuil des effets irréversibles – SEI								
· mg/m³	26	12	9	8	7	5	4	2
• ppm	9,3	4,3	3,4	3,0	2,4	1,9	1,5	0,7
Seuil des effets réversibles – SER								
· mg/m³	ND	ND	ND	ND	ND	ND	ND	ND
· ppm	ND	ND	ND	ND	ND	ND	ND	ND

ND: Non déterminé

■ Justification scientifique

Effets létaux :

- Etude critique : Arkema, (1995)1 (cotation de Klimisch : 1)
- Etude expérimentale chez des rats. Mesure de la létalité. Quatre concentrations d'exposition, une durée d'exposition (4 heures)
- Utilisation du logiciel Probit-Standard
- Pas d'application de facteurs d'incertitude

Effets irréversibles :

- La détermination des SEI n'a pas été possible compte-tenu des études disponibles
- Utilisation de la méthode par calcul (méthodologie française)
- Application d'un facteur d'incertitude (3 toxicité locale)

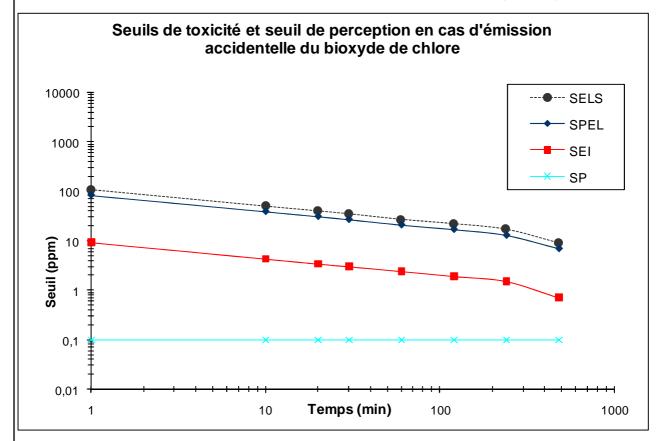
Effets réversibles :

- La détermination des SER n'a pas été possible compte-tenu des études disponibles

■ Remarques importantes

Néant

 $^{^{1}}$ Arkema. (1995). Study of acute toxicity of chlorine dioxide administrated to rats by vapour inhalation. Determination oft he 50% lethal concentration (LC₅₀/4 hours). INERIS-LETE n°95017.



INERIS – Émissions accidentelles de substances chimiques dangereuses dans l'atmosphère Seulls de toxicité aiguë

Bioxyde de chlore

■ Courbes des seuils SELS, SPEL, SEI et SP en fonction du temps d'exposition

